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Abstract

The growth rate of the hydromagnetic Rayleigh-Taylor

instability is approximated here for an accelerating plasma

slab. The slab is chosen as a large-radius approximation

to an imploding cylindrical foil. A normal mode solution

of the MHD equations is assumed, resulting in an integral

relation for the instability growth rate. The Rayleigh-

Ritz variational method is applied to the relation to

estimate the growth rate. A linearly decreasing magnetic

field is assumed in the slab perpendicular to the accel-

eration. A corresponding equilibrium mass density profile

is then found. Growth rate estimates are then made for

these profiles. Calculations are made for perturbation

wavevectors perpendicular to the acceleration and at an

angle e to the magnetic field. The growth rates for

' = 90, compare favorably with LeLevier et al's results

for a continuous density transition (14). Growth rates

for e = 06 are stable for all perturbation wavelengths

and magnetic field strengths. This contradicts prior

results in both slab and cylindrical geometry and suggests

an error in this work.
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I. Introduction

In this thesis the growth rates of the hydromagnetic

Rayleigh-Taylor instability for an accelerating plasma slab

are approximated using the Rayleigh-Ritz method. An accel-

erating slab is chosen as an approximation to an imploding

cylindrical shell. Discussion of a current experimental

effort points out the usefulness of this work.

A THI 

N F O I L P L A S M A

ANOK CATHODE

THERMALIZ&TION

ANOOEATOO

ANOD CA THODE

NOT PLASMA--

Figure 1. Schematic of the Stages of a SHIVA Implosion (20)

The SHIVA Project (4, 10, 11, 17)

The Air Force Weapons Laboratory is currently generat-

ing short, intense x-ray pulses with the SHIVA machine.

SHIVA consists of a megajoule capacitor bank connected to

a pair of electrodes. A thin (about one micron thick)

cylindrical foil is placed between the electrodes. This



configuration is schematically illustrated in Figure 1.

When the capacitor bank is switched across the electrodes

the foil ionizes and expands into a plasma sheath. The

mega-amp currents passing through the foil generate a mega-

gauss azimuthal magnetic field outside of the foil. This

external field is equivalent to that generated by a wire

placed on axis:

Be 21

There is now a I x A force directed radially inward which

causes the sheath to implode towards the axis. With the

large current and magnetic field, the sheath obtains an

average velocity on the order of 107 cm/sec as it collapses

on axis. The sheath kinetic energy is then thermalized,

producing a hot, dense plasma. This plasma radiates

strongly in the x-ray region (see Figure 1). X-ray powers

on the order of 1012 watts have already been observed.

Experience shows, however, that SHIVA performance in

certain configurations is degraded by the presence of

magnetohydrodynamic (MHD) instabilities. To see this,

transform to the rest frame of the plasma sheath's center

of mass. The plasma is then being accelerated against a

magnetic pressure

Pm = Be (1.2)

This is an unstable situation known as the hydromagnetic
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Rayleigh-Taylor instability (13). This instability causes

characteristic Rayleigh-Taylor ripples to grow along the

outer plasma boundary. These ripples grow, and numerical

simulations show that they can destroy the sheath if the

wavelength of the ripples approaches the sheath thickness

(17:274). This breakup in turn hinders the plasma thermal-

ization by increasing the sheath thickness and therefore

reduces the x-ray output. A good understanding of the

Rayleigh-Taylor growth rates for the SHIVA implosion is

therefore important.

Scope

This work is intended to approximate the Rayleigh-

Taylor growth rates for the early part of the implosion,

when the linear Rayleigh-Taylor instability dominates.

Later in the implosion, the instability evolves into a non-

linear stage which is more amenable to computer simulation

(9). Growth rates for azimuthal perturbations are espe-

cially interesting since the current computer simulations

operate in an r-z geometry only. The perturbations con-

sidered will have both z and e variation. The effect of

the azimuthal magnetic field as it diffuses into the plasma

sheath will also be considered. This field acts to help

stabilize the instability. This problem will be attacked

here in a planar approximation with approximate forms for

the magnetic field and plasma density profiles. These

approximations should be good in the region of interest

3



near the outer edge of the sheath (where the instability

occurs). Finally, these growth rates will be approximated

using a variational technique (the Rayleinh-Ritz method)

because an exact solution could not be found. An exact

solution for the limiting case of z-axis perturbations has

recently been reported by Tsai, Liskow, and Wilcox (19)

for essentially the same planar problem. They also were

forced to use numerical methods to handle azimuthal pertur-

bations in the sheath, however.

Assumptions

All work here was done in planar geometry with a thin

plasma sheath. Although the actual geometry is cylindrical,

the agreement between the two geometries should be good

during the early stages of the implosion. Cylindrical

convergence effects are not yet significant (10), making

a planar approximation acceptable.

Several assumptions are made about the sheath plasma

itself. The sheath is assumed to be incompressible, to be

describable by the ideal MHD equations, and to have zero

electrical resistivity, all essentially for convenience.

It should be mentioned, however, that a magnetic field

cannot diffuse into an infinitely conducting plasma. Mag-

netic fields will therefore be frozen into the plasma sheath

under the assumption that the fields would physically have

diffused into the plasma and then have been frozen into

place.

4



The next assumption is that the plasma viscosity is

zero. Turchi and Baker state that for a typical SHIVA con-

figuration the viscous Reynolds number exceeds 106. The

size of this quantity implies that viscosity can be ignored

inside the sheath (20:4943).

Organization

The body of this work is organized as follows: In

Chapter II the MHD equations are presented. These equations

are linearized and a normal mode solution is assumed,

resulting in an integral relation for the growth rates of

the Rayleigh-Taylor instability. This relation cannot be

solved exactly, so the Rayleigh-Ritz variational principle

is presented as an approximate method of solution. Approx-

imate forms for the magnetic field and plasma density pro-

files in the plasma sheath are developed in Chapter III for

insertion into the integral relation. The Rayleigh-Ritz

method is then applied to the integral relation to approx-

imate the growth rates. To do this, a computer program

was written. Its results are reported in Chapter IV.

This work is done in CGS-EMU units.

5



II. Background Theory

Application of the MHD Equations (2:48-56, 3:428-66)

The magnetohydrodynamic (MHD) model is one of the

simplest models of a plasma available. It considers the

plasma to be a single conducting fluid. In an ideal MHD

model, the fluid is assumed to be infinitely conducting.

This in turn implies local charge neutrality in the plasma.

It is also assumed here that the fluid is incompressible

and has no material viscosity.

We wish here to model a plasma foil with a center of

mass acceleration g. It is therefore convenient to work

in an accelerating reference frame moving with the plasma

center of mass. A uniformly accelerating frame, the MHD

equations, are identical to those in an inertial coordinate

system except for the addition of a + pg force term to the

equation of motion (19:1677). If the center of mass veloc-

ity is much less than the speed of light, which is certainly

the case for an accelerating plasma, the current density

J and magnetic field B have essentially the same magnitude

in both the laboratory and plasma frames. The necessary MHD

equations are then as follows:

1. The equation of motion

dP I + x + A (2.1)dv = - VPmat + c

2. The incompressibility equation

V = 0 (2.2)

6
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Figure 2. (a) The cylindrical implosion
geometry in the lab frame. (b) The
planar- geometry under consideration in
the rest frame of' the plasma center of
mass,
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3. The mass continuity equation

LE + . Vp = 0 (2.3)at

and 4. Ampere's Law (with the displacement current

ignored)

v x =4_ (2.4)

c

By inserting (2.4) into (2.1), using a vector identity for

(V x 9) x 9 and assuming that J _ V9, the Lorentz force can

be replaced by

-- B2  1
c 8 -f 4i 4 IT

-VPmag + L " V9 (2.5)
4 ir

The Lorentz force therefore consists here of a pres-

sure gradient component perpendicular to the magnetic field

lines and a restoring force component opposing bending of

the magnetic field lines. If the pressure Pmat in (2.1)

is replaced by a total pressure P = Pmat + Pmag, (2.1)

becomes dv 4dv = - + + L • * (2.6)

These equations are here applied to the geometry shown

in Figure 2 with p = p(z), P = P(z), and g = -gz. The

acceleration is, of course, not constant in a cylindrical

implosion. The assumption here of a constant acceleration

is equivalent to examining the sheath at one particular

instant during the implosion. Acceleration in the +z

8



direction in Figure 2b corresponds to an acceleration in

cylindrical coordinates in the -r direction (see Figure

2a). Figure 2b therefore corresponds to an implosino in

the positive z direction.

The equations (2.2), (2.3), and (2.6) are first

linearized, with variables * written as the sum of an
equilibrium value *o and a small perturbed value 01 which

contains all the time dependence. The density pressure

and velocity are therefore written as p = po + Pl, P = Po

" PI, and -Vo + 1. respectively. From this point on

the equilibrium values will be written without subscripts.

When these forms for the variables are inserted into the

equations, quadratic terms in perturbed quantities are

ignored and time derivatives of equilibrium values equal

zero. The equilibrium velocity o = 0 in the frame of the

sheath.

A normal mode assumption is now made. All perturbed

quantities 0i are assumed to have the form

= (some function of z). exp (ikxx + ikyy + Yt)

(2.7)

dependence, with k2 = kx2 + ky2 . Any arbitrary perturba-

tion can then be represented as a Fourier series of expo-

nential terms. Only the fastest growing Fourier component

is important, however. The simple dependence of (2.7) is

therefore adequate here. Inserting the dependence in (2.7)

into the linearized equations implies the substitutions

9



d ikx, d d (2.8)
dx dy ad Y (2.8)

The only remaining derivatives are with respect to z.

The details of the linearization and normal mode solu-

tion are carried out by Chandrasekhar (3:428-430, 457-466)

for both the hydrodynamic and hydromagnetic cases (the non-

conducting and conducting cases, respectively). In the

hydrodynamic case the result is the differential equation

D(pDw) - pk2w + k 2g (Dp) w = 0 (2.9)Y2

d
where D = - and w = Vz . This equation is in Sturm-

Liouville form. Sturm-Liouville theory states (3:432) that

if Dp is positive everywhere, then all eigenvalues y2 are

positive. If Dp is everywhere negative, all eigenvalues

are negative. Finally, if Dp is anywhere positive then

there exists at least one positive eigenvalue. The time

dependence (2.7) means that an initial perturbation will

grow exponentially if y2 > 0, resulting in an unstable

state. If Y2 < 0, the amplitude of a perturbation oscil-

lates periodically, yielding a stable state. Combining

these facts, we see that the configuration is unstable if

Dp is positive anywhere, and it is stable if Dp is negative

everywhere.

Adding the physical requirement that w must be con-

tinuous everywhere to (2.9), we see that if p and Dp are

continuous then D(pDw) must also he continuous. This in

10



turn implies that Dw must also be continuous. Thus the

continuity of p and Dp implies the continuity of w and Dw.

If p or Dp is discontinuous (say at z = 0), then a

boundary condition can be derived by integrating (2.9) over

an infinitesimal interval including z = 0. The result is

A. (pDw) =- (A~p) w (0) (2.10)

where Ao  = *(0+) (0-).

For the hydromagnetic case with a magnetic field in the

-x-y plane equation (2.9) becomes (Ref 2:55)

D{ [py 2 + 2 ] Dw

k2 [py 2 + - (t . g)2 - g Dp]w (2.11)

This equation is more useful when transformed into a varia-

tional form. This is done by multiplying (2.11) by w and

integrating both sides over some interval of interest

(a,b), giving

b1
f D{[py 2 + 2 ( . w)2] Jw} dza 4f

k2 fb w2 [py 2 + (  )2 gDp]dz
a 4(2.12)

The left-hand side of (2.12) is then integrated by parts,

assuming the boundary condition

w(k )2 b 0 (2.13)

11



This condition is met in all cases considered here and

(2.12) then becomes, after rearranging,

b- [(Dw)2 + k2w2]}dz
2 a 47w (2.14)

a fp{(Dw)2 + k2w 2ldz

This is the variational form which will be used here.

Examination of (2.14) shows that it gives a real value for

Y2 if k is real (which it is here). Also, since the

integral of the second numerator term in (2.14) is positive

definite, we see that the growth rate decreases when a mag-

netic field is introduced with a component parallel to the

perturbation wavevector k. This stabilization is due to

the supporting magnetic pressure Pmag which helps to counter

the plasma acceleration g. If k 1 , the stabilizing term

vanishes.

Rayleigh-Taylor Instability

The Rayleigh-Taylor instability is a macroscopic

effect often encountered in hydrodynamics and hydromagnetics.

It occurs when a more dense fluid is supported by a less

dense fluid against a "downward" force. A classic example

is a layer of water supported by a layer of oil against

gravity. A small periodic perturbation along the fluid

interface initially grows exponentially in amplitude. This

growth can be explained with a simple energy argument.

Figure 3 shows the perturbation. This perturbation involves

the transfer of fluid from positive z to negative z regions.

12
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This is an energetically favorable transfer. The per-

turbation will therefore grow. It has been shown experi-

mentally (2:51) that this exponential growth changes into

a linear growth with respect to time when the amplitude of

the perturbation reaches about 2.5/k. In this stage spikes

of the heavier fluid fall and bubbles of the lighter fluid

rise across the interface. Paradoxically the initial ex-

ponential growth is called the linear Rayleigh-Taylor in-

stability while the linear growth stage is called the non-

linear Rayleigh-Taylor instability (because the linear MHD

equations no longer apply).

To show the linear instability analytically, consider

the Sturm-Liouville equation (2.9). This equation has

simple analytical solutions for two different density dis-

tributions. Rayleigh (15) showed that for an exponential

density

p =p0ez (2.15)

trapped between rigid walls at z = 0 and L, the velocity

perturbation is of the form

w = A (emlz - em2z) (2.16)

where ml and m2 are the roots of

2+ m8 - k2 (I-g/ 2 ) = 0 (2.17)

with k, g, and y having their previous meanings. The

13
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Figure 3. An illustration of the
Rayleigh-Taylor instability mechanism.

14



instability growth rate is then the solution of the rela-

tion

1 a 22 +7r2

-1 + T (2.18)

Since the right-hand side of (2.18) is positive, y2 takes

on the sign of 8. The fluid is therefore stable for nega-

tive a and unstable for positive B.

Taylor (18) considered the stability of a discon-

tinuous density of the form

P= , z < 0 (2.19)

p2  z > 0

for constant p1 and P2 . Equation (2.9) then has a solution

w(z) = Aekz z < 0

Aekz z > (2.20)

Pl < P2 is thus an unstable configuration, while p1 > P2

is stable.

This section has dealt so far only with the hydro-

dynamic case. There is a completely analogous effect in

the hydromagnetic case in which the pressure P in (2.1)

is replaced by a sum of plasma and magnetic- pressures

Pmat + Pmag. The nature of the instability is basically

unchanged, however.

15



A Continuous Density Transition (14)

The linear growth rate estimates currently used in the

SHIVA project are due to LeLevier, Lasher, and Bjorklund

(14). They extended Taylor's treatment of a discontinuously

stratified medium by assuming a continuous density transi-

tion of the form

P = P1 - , pek , z > 0

(2.22)
P2 + T 6pekz , z

with 6p = Pi - P2 > 0. Even for this relatively simple

density distribution the differential equation (2.9) has

no obvious analytical solution. LeLevier et al instead

begin with the plasma equation of motion

p* + DP + pg = 0 (2.23)

and the assumption

Pl = -fwDpdt (2.24)

for the perturbed density. (2.23) and (2.24) are equiva-

lent to the hydrodynamic equations (2.1) - (2.6) for

B = 0.

A velocity perturbation of the form

w = Af(t) cos kx exp (-kz),-z > 0
(2.25)

Af(t) cos kx exp (+kz), z < 0

is assumed, presumably because (2.25) is the simplest solu-

tion of the incompressibility condition

16



V = 0 (2.26)

in rectangular coordinates. (2.23) is then integrated

over the intervals (--,0) and (0, -) using the velocity

(2.25). This gives two expressions for the pressure at

z = 0 which then are equated. Quadratic terms in f and

are small and are dropped. The resulting equation is

differentiated with respect to time to give

" kK ( .7
(P1 + P2) f - g 6pf = 0 (2.27)

The solution of this is

f(t) = exp (yt) (2.28)

with

Y2 = gkK Sp (.9
(k+K)(pl+P2 ) (2.29)

An interesting characteristic of this growth rate estimate

is that y remains finite for short wavelengths (k - -).

It also agrees well with numerical simulations of SHIVA

implosions (17).

The assumed velocity (2.25) is not, however, consis-

tent with the boundary condition (2.10) or the differential

equation (2.9) . There is no better choice, however, that

satisfies the incompressibility condition (2.26). This

problem has no obvious solution.

It should be mentioned that LeLevier et al have two

sign errors in their report. First, the gravitational

term in (2.23) has the wrong sign in their report. Second,

17



the provided velocity potential * which leads to (2.25) by

the relation w = -Do requires a negative sign for the

negative branch.

Linear Rayleigh-Ritz Method (6:193-206, 12:161-4)

The Rayleigh-Ritz method is a simple variational

method used to approximate the eigenvalues of an ordinary

differential equation. Only its application to the Sturm-

Liouville equation

D(p Dw) - rw + Xsw = 0 (2.30)

where p, r, s, and w are all functions of z and all eigen-

values are positive, will be discussed here.

As shown in Gelfand and Fomin (6:198), (2.30) can be

expressed in the variational form

afb (p(Dw)2 + rw2 )dz (2.31)

afb sw2 dz

If both numerator and denominator are positive definite

quantities, Rayleigh-Ritz theory states that the function

w satisfying appropriate boundary conditions and minimizing

X in (2.31) is an eigenfunction of equation (2.30). This

eigenfunction corresponds to the smallest eigenvalue of

(2.30). This eigenvalue is then given by (2.31) with the

eigenfunction substituted for w. Normally, however, this

method is used only when the eigenfunctions cannot be

found explicitly.

18



A trial function with adjustable parameters is used to

approximate the eigenfunctions. In a linear Rayleigh-Ritz

approximation, the trial function is of the form

q
W = iElai~i (z) (2.32)

where the 's are orthonormal functions satisfying the

necessary boundary conditions. This trial function is now

inserted into equation (2.31), giving an estimate of the

eigenvalue. According to Rayleigh-Ritz theory (6), this

estimate is greater than the true eigenvalue and converges

monotonically to the eigenvalue as q increases.

The problem is now restated as that of minimizing

b
J (Gl, ..., aq) a f (p(Dw) 2+rw2 )dz (2.33)

subject to the constraint

K cg) b sw2dz = 1 (2.34)
a

This problem is identical to the original problem and in no

way limits the class of allowable solutions (6). The new

problem is solved using Lagrangian multipliers. Minimiz-

ing J subject to K = 1 therefore requires that

ai (J - aK) = 0 , i=l, q (2.35)

a0•

where a is an undetermined Lagrangian multiplier. (2.35)

is a system of q simultaneous linear equations. If Jij

and Kij are defined such that

19
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q q
J =l jl J Jij (2.36)

and
q q

K = ill jil aiaj Kij (2.37)

then the system will have a nontrivial solution if and only

if

det (D) = 0 (2.38)

where

Dij = Jij - o Kij (2.39)

a is then the best estimate for the smallest eigenvalue

X1 of (2.30) possible with the trial function (2.32) of

order q. As the number of terms q in the trial function

increases, the estimates decrease monotonically towards

A, as q goes to infinity.

The Rayleigh-Ritz method thus provides an upper bound

on the first eigenvalue X1 of the Sturm-Liouville problem.

The number of terms in the trial function can be increased

until the accuracy of the approximation is sufficient.

20
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III. Applications

Application of Rayleigh-Ritz Theory to the Hydromagnetic
Problem

The Rayleigh-Ritz theory of Chapter II will here be

applied to the variational equation (2.14) to estimate

the growth rate y for an accelerating plasma sheath. The

sheath density will be assumed to peak in the center of

the sheath with Dp > 0 over 0 < z < zO and Dp < 0 for

z > zO (see Figure 4).

The maximum growth rate might be expected with a trial

velocity function w which is identically equal to zero for

z > zO . This assumption implies that there is no net plas-

ma flow from the stable (Dp < 0) into the unstable (Dp > 0)

region. As shown in Chapter II, Dw must be continuous

everywhere if p is well behaved. Both w(zO ) and Dw(zo)

must therefore equal zero.

e max

0 zo  L z

Figure 4. Example of the class of density
profiles treated here.
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An orthonormal set of functions is needed for the

Rayleigh-Ritz procedure. The functions must be defined

over the interval (0, zo ) and meet the boundary conditions

w(zo) = Dw (zo ) = 0. Functions satisfying these conditions

are

C. (z_2_and Sm ( zzo  2z o  2

where
= cosh (XmU) cos (Xmu) (3.1)

Cm(u) = T ~ 2csh m cos (Xm/Z)

and

Sm(u) sinh (umU) sin (imu) (3.2)sinh (um/z) sin Pm/-)

Cm and Sm are discussed in Appendix B. They satisfy the

boundary conditions

Cm i C (± )= SA (_ i)= Sm (_ i) 0 (3.3)

X satisfactory trial velocity function is

w(z) = m (amCm) + mSm - 1)) (3.4)

(3.4) also satisfies w(0) = Dw(O) = 0. These boundary

conditions are equivalent to placing a rigid wall at

z = 0. For lack of a better trial function, (3.4) will

be used. Squaring (3.4),

w2 q q (__cm zi + mm - )
= mil nil (cmCm (Z

(nCn (+ ) + 8nSn( -_)) (3.5)
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Differentiating (3.4) and then squaring gives

(Dw) 2  q q (z i +m
Zo m=1 n=l ( imC ( -f 2

. (anCi (=z - i) + -nS i)) (3.6)

According to the linear Rayleigh-Ritz theory of Chapter II,

the required equations are

(J - XK) = 0 m=l, ... , q- (3.7)

and

a (J - XK) = 0 m=l, ... , q (3.8)

where K and J are the numerator and denominator, respec-

tively, of (2.14). X is the Lagrangian multiplier.

Inserting (3.5) and (3.6) into (2.14), we obtain

zo

J = f p((Dw)2 + k 2w 2 )dz
0

ZO q q

1fz mi nlk(amCn( 0 - V) + BmSx;(jZO -2)

(nCni (-~ - 1) + nS (-A - 1)

q q z 1 z 1-mil nKl (amcmC( - P + S( z-

= 1 z)Io z

zZ 2
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using the notation

(*j.flf 2) f fl*(u) f(u) f2 (u) du

and differentiating with respect to amp

M_ = 2 q

aclm - n.Ki {(an(CzAIPICn) + On (C61PIiSzi))

+ k2z0 2 (an(CmIPICn) + On(CmIPtSn))} (3.10)

Noting the symmetry between C and S in (3.9), we can simply

interchange a with 0 and C with S in (3.10) to obtain

_i 2 q

BOM z n- l { (an (CA I PI SM) + On (Si;I PI n)~

+ k2z02 (an (CA Pp!Sm) + On (SA P JSn)) (3.11)

The function K will be subdivided into K =K 1  K2,

with

zo
Kl = (Dp)w2 dz (3.12)

0

and

K2 - cos2e ' O B2 {(Dw)2 + k2w2} dz (3.13)41rg0

Performing exactly the same operations on K1 and K2 as

were performed on J gives

al= 2z0 nq~nCm~In +n(CMIDpISn)) (3.14)

2KI = 2z0  q (.5
30m ni(an(CnIDpISm) + Bn(SmIDpISn)) (.5
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q!

K2 2 cos 2 e q
am 47igzo n 1 {(an(C IB 2 Ici) + 8n(CIB2 1S))

+ k2 zo2 (an(CmIB 2 Cn) + 8n(CmIB 2 ISn))} (3.16)

and

aK2 2 cos 2 0 q

aB m 4 wgz o n Z  {(0n(C n B2 S ) + On(SmiIB 2 IS nj))

+ k2zo2 (an(CnIB 2ISm) + Bn(SmIB 2ISn))} (3.17)

To simplify the final result, the relations (3.7) and (3.8)

can be redefined as

a q

(i - XK) = (a n + (3.18)O-mn-il na bmn On ) = 0 (.8

and

aq
(J - AK) = nZl (Cmn an + dmn On) = 0 (3.19)

Once p and B have been inserted in (3.10), (3.11), and

(3.14) - (3.17) the elements amn, bmn, cmn, and dmn can be

determined. With these new variables the equation to be

satisfied is now in the block determinant form

IA B

= 0 (3.20)

C D

with A, B, C, and D being q by q matrices.

Once the matrix elements of (3.20) have been de-

termined for a particular problem the values of Xzo (a
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dimensionless quantity) which solve (3.20) can be found

as a function of k. Applying the Rayleigh-Ritz theory

from Chapter II, we see that the growth rate estimate for

(2.4) is

1 (3.21)
gE xopt

or

Y2 = k2 z-2  (3.22)

loptzo Zo

where the optimal root Xopt is the smallest positive root

of (3.20) or the largest negative one if there is no

positive root. Xopt therefore corresponds to the most

unstable mode of the instability.

Approximate Forms for B and p

In a SHIVA implosion, the magnetic field is initially

located totally outside the plasma sheath. The field then

diffuses into the sheath according to the diffusion equa-

tion

-- = - 2B - (3.23)

Rt 4ir -a 7

in a planar approximation, where n is the electrical re-

sistivity. Hussey and Roderick (10) have shown that the

external field Bo increases linearly with time through

much of the implosion time. This leads to a magnetic

field profile

B(z,t) = 4 Bo(t) i2 erfc (S) (3.24)
q
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where

q = -_ (3.25)

and

i2 erfc (!) (3.26)

is the second repeated integral of the complementary error

function.

The greatest contribution to the instability growth

rate comes from the outer edge of the plasma sheath where

the plasma density rises quickly. For small z (3.26) is

well approximated by (10)

4
B = Bo (1 -T ) (3.27)

where

q = 4.51 Xth (3.28)

for a sheath thickness Xth. Sheath thickness is here

defined as sheath mass per unit area divided by maximum

sheath density.

The linear magnetic field (3.27) equals zero when

1
2

z = - 2 Xth (3.29)

This small z approximation will be extended throughout the

whole plasma sheath under the assumption that the small-z

region determines the instability of the sheath. The mag-

netic profile used here is therefore

B(z) = Bo (1 - E) (3.30)
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T4

where L = 2Ath. This profile is illustrated in Figure 5.

Hussey, Roderick, and Kloc (11:1454-5) have used the

equilibrium equation of motion

Og= - (Pmat + Pmag) (3.31)

to derive an equilibrium density distribution which cor-

responds to the linear magnetic field profile (3.30). This

density distribution is (see Figure 6)

-= 2p (1 + (1+0) exp 0 < z <LL BL

(3.32)
2p (8 - (1+8) exp (- exp (-z), z > L

where p is an average sheath density and

L = (3.33)
Pmag

is defined in terms of the maximum magnetic pressure and

the average plasma pressure. Differentiating p with respect

to z shows that the peak density occurs at

zo = L Ln(+8 (3.34)

and is

1i+81

Pmax = 2 (1-8 Ln(L-T)) (3.35)

For small values of 8, very little plasma is located in the

region z > L. The plasma is therefore concentrqted in a

region twice the defined sheath thickness.
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BO

0 z

Figure 5. A linearly decreasing
magnetic field profile.

max

z L z

Figure 6. An equilibrium mass density
corresponding to a linear magnetic field.

29



Growth Rates for a Plasma Sheath

Growth rates for the Rayleigh-Taylor instability in

an accelerating plasma sheath are addressed in this

section. This development is the major result of this

work.

The density distribution

p = 2_ {_(1+ ) (1+B) exp (- (3.35a)

L O

for 0 < z < L will be used here, along with the magnetic

field

B(z) = Bo (1 - .) (3.36a)
L

(3.35a) and (3.35b) need only be inserted into the equations

(3.10) - (3.17). The determinant equation (3.20) will then

be solved, giving the desired growth rate estimate.

If the density (3.35a) is inserted into (3.10) we get

J 4Z q
am = - - 2L) E {(an(CIC) + an (CrI 1Se))m 2L 2 n=l

+ k2 Z0
2 (an(CmlCn) + 6n(Cm!Sn))1

4iq
L n l I (an(C Iu IC) + an(Ci LulS))

+ k2zo2 (cn(CmlulCn) + 8n(CmIuSn))}

- )exp 8L

q

nil {(an(CKJexp(z z)JC) + Bn(Cdlexp(- zC'u) 1 S))

+ k2zo 2 (a (Cmlexp( - Zou)ICn) + Bn(Cmlexp( - ZOU)ISn) ) }

(3.36)
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Orthonormality yields

(Cm!Cn) = 6mn and (CmISn) =0

while parity considerations mean that

(Cjf1 SAi) = (CifiluICi) = (CmjuICn) = 0

Inserting thzase values into (3.36) gives

qq

-L nE On((fiISA) + k2zo2 (CmIuISn))

-4p(1+0) exp

fa ni{n(C exp(- Zo) 1 Cli) + k2zo2 (Cmlexp(-~C)

+~~~~~ S(Clep-zuIS-i) + k2z 2(Cmlexp(- zou)

(3.36a)

Noting the symmetry between C and S in (3.9), we can simply

interchange a with a and C with S in (3.36a) to obtain

- q2L E an(ii~i + k( 0
2

L n=l n njuSj) + k2zo2(CnIUICm))

-4T(1+8) exp (-
ZO ~ 2L
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q
E l{0n((Sjf'Iexp(- zOu)1 5 .) + k2z 2(Smlexp(- ZOU) ISn))

+ an ( (Cij exp (- 70u) S -) + k2zo2(C~x( o?~)1 (.7

Inserting

Dp = 2p + 1 O 1+8 ( (3.38)

into (3.14) and (3.15) yields

4po{a t-exp (- 28L

q
-r 1,. tf'iex,.a. Z'Ou 1 Cn) + nC~~( znu)ISn)))

(3.39)

and

BIl 4 z0 {m + exp$- -x
iYE 8 2$L

q

*n=1 (Sn(Smjexp(- znu)l 5 )

+ an(CnlexP(- -ZOU) ISm)) 1 (3.40)
BL

Inserting the B field (3.30) into (3.16) and (3-.17) yields

3K2'= 2B,0
2 zgcos2 e q (-ujA ~o(mu

Bam 4rgLzf Z {ain((C~~ 2 ~i m k2o(CI Cn)

L 12 2

$n l)((Cju) -+ k2 z0 2 (341

- O nn (~-l(C~u~j 2  (CmlulSn))) 3.1

and
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3K2 =2Bo 2 z0cos2 e q j~S)+kz2SI2
80m 4TgL2 n=l O'mi(S in)

+ ( L 2
m S,) + k2z0

2 6m)

- o 2 nn

an2 l)((Cn'jIUIS j + k2 Zo2 (CnIuISm)) (3.42)

The expressions (3.36) - (3.42) can now be substituted

into (3.18) and (3.19) to give values for the matrix ele-

ments a' through d', where

L
=j = amn (3.43)

P

and so on for b, c, and d. The results are then

a'. =4±l~-~ (CIICI)

-4(1+0) exp (- -!)UC~jjexp(- IU)jCAj)

+ k2 zo2 (Cm Iexp(' l H)Cn

- 4TXL(+) exp ( l(mexp(- La) ICn)

+ 2T )XL(k2zo2(Cmlu 2ln + (C-j 1u2 ICxi)

+ (. 1 2 (C - ICA))

nd(1+0 T j) k2 z0
2 + 4TXL + 2T TXL (1 1
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bin'= c~ = -4{(Cfju!Sj)+ k2 z0
2 (CmIulSn)1

4(+)exp( ){(Cmlexp(-T )ISA)+kzo2(Cmlexp(- 13 -)ISn))

- 4r AL( .-) exp ( j)(CmI exp (- 1u--) ISn)

2 2
- 2-rTXL(-Z - 1) {k2 z 0

2  (Cm~u~ ) + (xju~i}(. 5

and

= j) (SnISii)
T 2+ n

-4(1+0) exp (- 1-.) { (Sji Ijexp (- DR) I SA)

+ k2zo2 (Sm lexp(- 1U2-)ISn))

-4TXL(--) exp - -) (Smlexp (-u-l) ISn)

Sum -~ + 4T)~.L + 2TTXLk2zo2(1 .1)21 (3.46)

with

T =(3.47)

and

T =B0
2COS2 e (3.48)
41~rgL7

If the substitution

g = B02  (3.49)
81rTL

is made, then (3.48) becomes

T = 2 cos2e (3.50)

All matrix elements of the equation
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- 0 (3.51)

V D'

are now known. From the first section of this chapter,

the eigenvalues A of this equation allow an estimate of

the growth rate

2 = k 2 L2  g (3.52)

AoptL L

or

y2L = k 2zo 2  (353)

g = optLT
2

A FORTRAN program was written to solve (3.51) for X as a

function of k2 zo2 , e, and 8. The results of the program

are discussed in Chapter IV. All the unevaluated integrals

in (3.44) - (3.46) are evaluated in Appendix C.
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IV. Results

The Rayleigh-Ritz approximation to the hydromagnetic

instability growth rates of an accelerating plasma sheath

was developed in Chapter III. A computer program was

written to implement the approximation. The results of

this approximation are presented here. The stabilizing

effects of a magnetic field diffused into the sheath are

also discussed.

Parameters needed for the approximation are provided

by a one-dimensional simulation to the SHIVA implosion

using the MAGPIE code. The simulation data at selected

times is listed in Table 1. This raw data is converted

into necessary parameters in Table 2. The necessary rela-

tions to generate these parameters are given in Appendix A.

Convergence of the Approximation

As the number of terms in the trial velocity w in-

creases, the growth rate approximation provided by the

procedure of Chapter III should converge to the actual

growth rate. This is illustrated in Figure 7 for several

cases with perturbation wavevector 1 . For these cases

the growth rate estimates increase by 25 to 30 percent as

the trial function increases from 2 to 4 terms. The growth

rates increase by just 1 to 2 percent as the trial function

increases from 18 to 20 terms. The convergence seems to

be rather slow.
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Instabilities with I

The limiting case of a perturbation k j _ will be dis-

cussed here. This planar case is equivalent to a cylindrical

instability with only z-axis perturbations. In cylindrical

coordinates it is just the sausage instability.

Figure 8 shows the resulting dispersion relation for

typical plasma parameters. We see that the sheath is un-

stable for all wavelengths of perturbation, approaching

zero for long wavelengths and an upper limit for the growth

rate as X - 0 (k + w). This upper limit is not evident in

the figure, but it was verified for extremely small

wavelengths (k zo.l). This general behavior agrees with

that of Tsai, Liskow, and Wilcox for basically the same

problem (Figure 9).

The dimensionless growth rates of Figure 8 are trans-

formed into actual growth rates in Figure 10 for several

times during the SHIVA implosion. The data from Table 2

has been used, with the a rounded to the nearest multiple

of .05. The solid lines in Figure 10 represent growth rate

estimates made using LeLevier's result for an exponentially

transitioning density. It is assumed here that LeLevier's

density scale length 1/K = zo/4w. The agreement between

the two methods is then excellent (within 5 percent).

Oblique Perturbations

Perturbations with wavevectors not perpendicular to B

were considered. Figure 11 shows growth rates for a
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constant perturbation wavelength as the angle e between

and A decreases from 900. As the wavevector rotates,

the destabilizing perpendicular component decreases while

the stabilizing parallel component increases (parallel and

perpendicular will hereafter be with respect to 9). There

therefore exists an angle emarg at which marginal stability

is achieved. This Omarg is an overestimate which also

converges to the true value as the length of the trial

function increases.

The variation of emarg with perturbation wavelength

and the number of trial function terms is illustrated in

Figure 12. We see that 6marg increases moderately as

perturbation wavelength decreases. Even though the un-

stabilized perpendicular instability is greater for larger

wavenumbers, the stabilizing influence of the parallel

instability grows even faster with S-. Stability therefore

occurs at smaller angles as k increases.

In Figure 13 the perpendicular component of the per-

turbation wavevector kx remains constant while the parallel

component ky is increased. In this case the destabilizing

effect of kx is held constant while the stabilizing influ-

ence of ky is gradually increased until a value (ky)marg

is reached at which the two effects cancel out to yield

marginal stability. Figure 13 shows that long-wavelength

parallel components can be used to stabilize much shorter-

wavelength perpendicular components Ax, with the growth

38



rate being linear in ky. This stabilization causes the

growth rates to decrease when a long-wavelength component

is introduced. This fact is especially important when the

problem is related to cylindrical geometry. The stabilizing

e-perturbation wavelengths of a cylindrical sheath are on

the order of the cylinder radius for low-order modes while

the destabilizing z-perturbation wavelengths are on the

order of the sheath thickness. This suggests that long-

wavelength 6 perturbations might be able to largely

gtabilize the z instabilities.

These results, however, disagree with previous work

done on this problem. Tsai, Liskow, and Wilcox (19) have

recently reported the dispersion relation for parallel

perturbations shown in Figure 14. The sheath becomes un-

stable for long wavelength perturbaticns, with a mode of

maximum instability existing approximately midway between

the two points of marginal stability. These unstable modes

were not observed here, however.

Experimental evidence also supports the belief that

unstable modes exist for long wavelength perturbations

parallel to . SHIVA implosions have been distorted most

seriously by azimuthal perturbations in a pentagonal shape

(ke = 5). These perturbations have wavelengths on the

order of the cylinder radius.

These unstable modes might not be observable here

because the number of terms in the trial function needs
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to be increased. As the length of our trial velocity

function increases, the growth rate estimate increases.

The expected parallel instability growth rates may be so

small that short trial functions will indeed lead to

negative, stable growth rates. Longer trial functions would

then be needed to give positive growth rate estimates.
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V. Conclusion

A method has been developed to approximate the Rayleigh-

Taylor growth rate of an accelerating plasma slab. It has

been shown to agree with the analytical results of LeLevier

et al (14) for the limiting case t J . This agreement

suggests that my choice of a trial velocity function

identically equal to zero in the stable region is valid.

The behavior of the other limiting case, t parallel to

however, is suspect. No unstable modes were found for

long wavelengths. This fact may be due to insufficiently

long trial velocity functions. If this is not the case,

then there may be a more serious problem in this work

which brings the presented results (at least for t not

perpendicular to 9) into question. As mentioned in the

Introduction, the perturbations parallel to 9 are much more

interesting than those perpendicular to 9.

The developed program can also be used to estimate

the angle between k and at which a particular perturba-

tion wavelength becomes marginally stable. For a given

wavelength the instability has been shown to stabilize

*rapidly as e decreases from 900.

The method used here is general and can be used for

any density profile with only one contiguous unstable

region. The only change necessary is to replace p and B in

the unevaluated integrals in the first section of Chapter

III. Densities with several unstable regions simply
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require a trial velocity function which is piecewise

defined.

This work can be continued in several ways. First,

estimates could be made for a greater variety of parameter

values. The present results represent a fairly narrow

parameter range. In particular, longer trial velocity

functions need to be used with long-wavelength perturbations

parallel to B. The expected instabilities might then be

observed. Second, the method used to find the solutions

of the determinant equation (3.20) -- essentially a binary

search method -- might be improved to minimize the number

of times the determinant must be evaluated. The current

method uses a prohibitive amount of computer time for long

trial functions (and therefore large determinants). Third,

more accurate density and magnetic field profiles could

possibly be found. Hussey and Roderick (10) have presented

more accurate profiles which are probsbly too difficult to

work with here. Better approximations to these functions

than the ones used here might be possible, however.
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A pendix A: Cylindrical Sheath Implosion Relations

The basic variables for the implosion of a cylindrical

plasma sheath can be related by a series of simple relations.

These relations are useful enough to be derived here.

The cylindrical configuration is shown in Figure 15.

The first equation relates the magnetic field to the current

passing through the sheath. Outside the sheath the field

is simply that of a thin wire on axis:

Be (G) - .2 I (A) (A.1)

r(cm)

where r is the radial coordinate.

Equation (A.1) can be used to find the plasma

parameter

=  (A.2)
Pmag

where Pmat is the average material pressure and Pmag the

maximum magnetic pressure in the sheath. We may take

=1Pmat =  Ppeak (A.3)

where Ppeak is the peak plasma pressure (which is the

available variable from computer simulations) and

Pm (Mbar) = B02(ro) B02 (MG) (A.4)
8w 8w

for a cylinder radius ro .
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The next variable needed is the sheath acceleration g.

It is given by the relation

!0
2B°= 2 (A.5)

g = a

where a is the areal mass density (7:1057). If ain is the

areal mass density of the initial cylindrical foil, then

a is governed by a simple cylindrical convergence relation:

ainrin (A.6)
ro

where rin is the initial foil radius. Inserting (A.6)

into (A.5) then gives

B0
2rin (A.7)

g 8 7rainro

The final relationship will be for the sheath thick-

ness Xth. Hussey and Roderick (9:1385) have developed

the approximate relationship

1 nt 1
Xth = (4-. ) 2 (A.8)

where n is the electrical resistivity and t is the time

measured from the beginning of the implosion. For lack of

better information the resistivity will be assumed

constant here.
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Figure 1. Geometry of a
cylindrical implosion.
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Appendix B: A Set of Orthonormal Functions

A set of orthonormal functions satisfying the boundary

conditions

*(a) ='(a) = (b) ='(b) = 0 (B.1)

for a < b is needed in Chapter III. The functions

Cm(u) = cosh (Xmu) Cos (mu) (B.2)
cosh (Xm/2 ) Cos (Am/2 )

and

sinh (pmu ) _ sin (Vmu)
Sm(u) sinh (pm/2) sin (uim/2) (B.3)

were discussed by Chandrasekhar (3:634-643) and satisfy

the equation

y(iv) = a4y (B.4)

with the boundary conditions

y(-)= y () = 0 (B.5)

The_ C's and S's are orthonormal over the interval 1 1
2'2

with eigenvalues given by the solutions of

A A

tanh + tan =0 (B.6)

and

coth ' - cot = (B.7)

The functions Cm and Sm for m = 1,2,3, and 4 (and

their first three derivatives) have been tabulated from

u = 0 to 0.5 by Harris and Reid (16). Basic indefinite
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integrals involving Cm and Sm have been published by

Reid and Harris (16). These results allow integrals of

the form

(*ljunlI 2 ) = (u) un *2 (u) du (B.8)

to be calculated simply, with $1 and 02 representing C or

S and n integer. (Ollunj0 2 ) is integrated by parts q

times to leave only integrals of the form (01(r) 102(s)).

The indefinite forms of these integrals are evaluated in

Ieid and Harris for r = 0,1,2, and 3. Combining these

indefinite integrals with the boundary conditions (B.5)

gives a value for the integral (B.8). The explicit forms

of Cm and Sm have thus been avoided.
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Appendix C: Evaluation of Needed Integrals

All integrals of the form (jllfn# 2 ) used in Chapter

are evaluated here. These integrals fall into two cate-

gories: (1) those with f(u) = 1, u, or u2 and (2) those

with f(u) = exp (-au). Using the C and S functions of

Appendix B as *l and *2, the first category of integrals

can be handled fairly easily using indefinite integrals

solved in an article by Reid and Harris (15). The second

category of exponential integrals, on the other hand, must

be integrated directly using the explicit forms (B.2) and

(B.3) of C and S.

As an example of the method used for the first class

of integrals, consider the integral (CnjuISA) with m 0 n.

Integrating by parts,

(CjIuISA) = (ufCjS'du) - I fC'S'du' du (C.1)

Reid and Harris list

(Xm4-_n4 ) fCAS'du X m4fCmS'du

- ln4 fC nS'du + fC'Sndu-fCmSndu

(C.2)

The indefinite integrals on the right hand side of (C.2)

are also evaluated by Reid and Harris. Inserting into

(C.2) and then (C.l), and remembering that

Cm(J) = Sm( ) = m = S(J) = 0 (C.3)
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we have the desired result

(C~i u SAI) =Cmz C;&

4(m 4 + Pn4) Cm S*
+ (xm 4 - Pn4 )2 (C4

where Cm and Sn are evaluated at u =-.Completing the

other integrals from the first class in a similar manner

gives (for m #n)

Cm CM+X 2 tn2 Am
(CiII I -2-m-4 m 2(C.5)

(C ii ) 2 - + Am an h

(C~jjjC4i Xn m C I'- C1 ) (C.6)

(S~filiSi) 21M4m+2thM2 t2 I'm (C.7)

(SAIA) S , S, S, SIC8(S~S ~ 4- 4 (m 5n -m Sn) C)

(CMIuISm) 8C = (C.9)

'C 2 jC' =1 5Cm Cm t5 h XmC~O

(Cmlu I~n) 8Cm Cn
(CJUIn=(XM4 - n 4 )2

+ (4 A4i{l~ 4 +6Xn4 )C" C#/+ (m 4+1On4)

CM Cn) (C.11)

(S2s'=1+ 5S9m Sm 5 h2 ?M (C.12)mii, 12 4v2yu m7cot" 2

(Smlu28S SUh(mUISn) =U4~n~
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+ '" (6ijmI{lO m 4+6 n4 )Sni Sn + (61,,4+lOtn 4 )Sm Sn }+ ( um4_ nO -31-11m6'nS n n
(C.13)

(Cimu2Im, 1 Cm - tanh2 j (C.14)
MC - + A1 2  A 4 + Cm

Cm Cn - Cm Cn
(Czfju2I1C) = 2(xm4 _xn 4 )

4(Am 4+An4 )Cm Cn
+ (AmA 4 ) 2  (C.15)

and
(S/u2IS) 1 2  

S
+ coth 2 = + M (C.16)

with the C and S functions again evaluated at u =
2'

The second class of exponential integrals are evaluated

using the explicit forms of C and S. The results are (with

m now allowed to equal n)

(CmIeau 1 sinh 1 (Am+An-a)l m = nm
2 cosh - cosh Am + An a

2 2 Am na
sinh (Am-An - a) 1)

+ sinh - (An-Am - a) sinh (m+xn
Am -An -a __________ _________

nAn 2m -a Am +A +a

1 2 (Am-a)cosAsinh U-a + 2ansin osh
2 cosh AM cos cos-7 n-2 2 + 2n2iah

2 2 An2 + (Am-a) 2
A n •Am+a mA

2(Am+a)cos--nsilnh-- a + 2An sin _-_ cosh m+a
2 22

An2 + (Am+a)2

1 (Am-n)sin X cosh ! + cos X X sinh

+o cos a 2 + (Am-An) 2

~m+An a ____ si a
(Arn+An)sin A2 cosh + cos A2+ sinh

a2+
(Am+An)2
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- . A~ 2( -a)cos- T irih-f + 2x, sini-cosh n-
_ _ _ _n_ _2 2 rno InA -( -a)2o coshT m n-

A. A n+a Ak A n+a
+2(XA +a~o- sinh + 2 si - cosh

2 2 ( -7
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(SmIe-auI Sn) 2 sinh =2sinh 1f2 sin 2 1r~ia

- sinh ~- (Pmina) - sinh snh am+na

2sinh .1 2(Pma) sih-1sin- -a c s Pm I 2PflCO+ Sifha m2 22n + ( -a 2

1(ma i 2 csh Pm-asi -!2 in csh pm- - 0csaihp-

2 2 2 h
2~J~ + vn (jm-a2

+ (ma~i 1! cashn 2mlPn cos Iola co ~+ sinh ~
+i 1 si 1  a2 2+2

(P+G)~ Im-On) cshn + avi cas os Lim~lpf aih

2 a2+(m~~) 2 sin 7

1 (~asin si cos a (P-n 2 PmCS~jl

2P+ sin cahA+a o mp sinh
2 2

1(ina si2(coh in-+a -
2 1 cosh sin - 2u 1-ainaj

2 ih-Msn2M si2 +Gn-a)
2 os2

+ siPn Pnma) sin h Vcash -a) co sinh (C.18)n~a
1in~~UmZ XmPna X~

1Cl-u Sn) =-- 1 os I sinh 1A + un-a cos

22cosh -Mscash 2 Xm+n
2 2m

sin GnAma) in (x-pna) sin (m~64a

unXI mu- mP~



-
2Uin+a) Cos XMsinh lin+a 2 2X i M ohP~

2 2 22 mi~*cs 2_+

X2+ (lPn+a)2

________ 2(Xm-a)sin!%-oshxm-a 22'csnih -
1 oh-;LsnE 2 2 -2 2incsMsn

22cosh +in .-a2 2

-2(Xm+a) sin Pcosh xm+a -2 o Psn Xm+a
- 2 imO1 2_}

tn2 + A a2

+1-a sin w.n91nCosh + (in-Xm)cospnX in a
Cos sin ~ a + ( m2 2

- a si tjn+Am cosh a+ ai~+m ~+msn_~(.9

a2  + (nX)

-auCA)Amxn sinh .1 (m a(C, IeaC) 2 cosh - cosh ALL 2 ~+~ a
a 2 AM + n-a

-sinh 7 '()mXn-a) sinh -sn (Anxm-a) sih. (Xm+Xnf+a)

XmXn-a xn-xm-a + AM+An+a

+ XmXn 2 (Xm-a)sin -josh A m-a 2Xcs~ sinh XM-a
2coshlicos I-An2 + (Xm-a) 2 - 22

+2 (xm+a) sin cosh Lm=- 2 xn COSI sinh

An 2 + (Am+a) 2

2( asin A~m cosh X - 2Amcos -A- sinh Xn-aAmn2X-)i 2 2 2 2+ 2cosh.~cs~ Am2
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2(xn+a) sin -mcosh An+a - Amcs snhA~+ 2 2 2 2_ o -sn

Ar2+ (An-Ia) 2

+ Xm ~ (AjmAx 1) sin 2-X cosh ~+ acos AM--n sin 2
Cos -- I {a 2 + (Am-An ) 2

-(xm+An) sin AM+ An cosh A+ a cos Am-I-n sinh (.0

a2 + (Am+An)2

-uS Umlin sinh -1 (PIm+n-a)
(SIa~s)=2 sinh -pm sinh kn U-

2 2 m+n-

sinh 2(mn-a) +sinlh sin (.- a 1
G-n + 2(npm-a + sih2-(~ +lIm+a)

Ilm1)In-a 1Pn-pm-a Pim+IPn+a -

Pmpn 2(Gm-a) Cos -IIR sinh pfla + 2Jnsin-)'!osh p -a

2m'h i 2 2 a
2 ih-1 i 2 P2 + (pm-a)2

+ 2 (iin+a) cos 2y sinh U2+ 2 o~m si ymcosh +

w 2+ (in+a)2

l~mtln 2 (una)cosxtsinh'n 2 + 2umsin 21COsh-iZ1'
2 sinh -P sin YJ {2 IUm4 + Pa)

2 ()Jn+a) cos -2 sinh 2na 2 pm sin -0 cosh P~+ 2~. 2 '~ 2 21

Pn+ (ljn+a)2

W____)sin_ m -4--coshmn a~~±sim' + a cos ll2 -4n ainh a

4i m 4n a 2 + ( L - ) 2
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+ aj n a + f4 n
+ (l M+nsin cosa + a cos mnsinha

2 +2 (C.21)

and
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(C Je-ujS) mAn sinh . P~ma
(C~IauIS) =2 cosh ,L1 sinh A 2 (nIma

2 2 1In+pJm-a

siflh f(Am-pn-a) _ sinh -1 (Onf-Am-a) si nh 'P+ma

Am-Pn-a in-Xm-a 1n+Xm+a

AmtIn 2 (Xm-a)cos .R.Isinh X ML-a+ 2Win2ishX
2si~jo 1 -~ 2 2 2sn~c~ 2

2s~inL%-oh !! 2 + (Xm-a)2

2 s2 n 2 sh

+ (+a)
2(ma)cs P inh a sin vn csinf 2x cos Lsih

2 2 2
2U 2m 2 + ( ln-a)2

cosiain osh - 2X Cos sinh I

+(Ina sim n 2 2 1

2mPna sinA cosh NA os1I cos sin aa
~imiin 2 2 2 Il ~ 22

+ mj -a sin j cosh I- (Am+I n) cos sinh

a2 + (Xm+vn )2

All integrals listed in this appendix have been

verified using a Simpson approximation method for (m,n)

equal to (1,1), (2,2), and (1,2).
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